When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  3. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    However, the Euler–Lagrange equations can only account for non-conservative forces if a potential can be found as shown. This may not always be possible for non-conservative forces, and Lagrange's equations do not involve any potential, only generalized forces; therefore they are more general than the Euler–Lagrange equations.

  4. Lagrangian (field theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_(field_theory)

    In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...

  5. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data. Given a data set of coordinate pairs ( x j , y j ) {\displaystyle (x_{j},y_{j})} with 0 ≤ j ≤ k , {\displaystyle 0\leq j\leq k,} the x j {\displaystyle x_{j}} are called nodes and the y j ...

  6. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    These equations for solution of a first-order partial differential equation are identical to the Euler–Lagrange equations if we make the identification = ˙ ˙. We conclude that the function ψ {\displaystyle \psi } is the value of the minimizing integral A {\displaystyle A} as a function of the upper end point.

  7. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    The formulation of Lagrange's equations for this system yields six equations in the four Cartesian coordinates x i, y i (i = 1, 2) and the two Lagrange multipliers λ i (i = 1, 2) that arise from the two constraint equations.

  8. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  9. Lagrange's formula - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_formula

    Lagrange's formula may refer to a number of results named after Joseph Louis Lagrange: Lagrange interpolation formula; Lagrange–Bürmann formula; Triple product expansion; Mean value theorem; Euler–Lagrange equation