Search results
Results From The WOW.Com Content Network
In computational complexity theory, DTIME (or TIME) is the computational resource of computation time for a deterministic Turing machine. It represents the amount of time (or number of computation steps) that a "normal" physical computer would take to solve a certain computational problem using a certain algorithm. It is one of the most well ...
Service times are deterministic time D (serving at rate μ = 1/D). A single server serves entities one at a time from the front of the queue, according to a first-come, first-served discipline. When the service is complete the entity leaves the queue and the number of entities in the system reduces by one.
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data.
Time Hierarchy Theorem. If f(n) is a time-constructible function, then there exists a decision problem which cannot be solved in worst-case deterministic time o(f(n)) but can be solved in worst-case deterministic time O(f(n)log f(n)).
Use of prior knowledge about whether the intercept and deterministic time trend should be included is of course ideal but not always possible. When such prior knowledge is unavailable, various testing strategies (series of ordered tests) have been suggested, e.g. by Dolado, Jenkinson, and Sosvilla-Rivero (1990) [ 4 ] and by Enders (2004), often ...
Block diagram illustrating the time invariance for a deterministic continuous-time single-input single-output system. The system is time-invariant if and only if y 2 (t) = y 1 (t – t 0) for all time t, for all real constant t 0 and for all input x 1 (t). [1] [2] [3] Click image to expand it.
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
A mathematical or physical process is time-reversible if the dynamics of the process remain well-defined when the sequence of time-states is reversed.. A deterministic process is time-reversible if the time-reversed process satisfies the same dynamic equations as the original process; in other words, the equations are invariant or symmetrical under a change in the sign of time.