Search results
Results From The WOW.Com Content Network
The two-dimensional case is the only non-trivial (i.e. not one-dimensional) case where the rotation matrices group is commutative, so that it does not matter in which order multiple rotations are performed. An alternative convention uses rotating axes, [1] and the above matrices also represent a rotation of the axes clockwise through an angle θ.
Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations , which have no fixed points, and (hyperplane) reflections , each of them having an entire ( n − 1) -dimensional flat of ...
In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly. [2] [3] A rotation of axes is a linear map [4] [5] and a rigid transformation.
The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...
A sphere rotating (spinning) about an axis. Rotation or rotational motion is the circular movement of an object around a central line, known as an axis of rotation.A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation.
As an example, let the vector = (,), be a vector in the plane. A rotation of the vector through an angle θ in counterclockwise direction is given by the rotation matrix: = ( ), which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.
"Widdershins" or "withershins" (from Middle Low German "weddersinnes", "opposite course") was used for counterclockwise. [2] The terms clockwise and counterclockwise can only be applied to a rotational motion once a side of the rotational plane is specified, from which the rotation is observed.
In 2 dimensions the curl of a vector field is not a vector field but a function, as 2-dimensional rotations are given by an angle (a scalar – an orientation is required to choose whether one counts clockwise or counterclockwise rotations as positive); this is not the div, but is rather perpendicular to it.