Search results
Results From The WOW.Com Content Network
A function that is not monotonic. In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. [1] [2] [3] This concept first arose in calculus, and was later generalized to the more abstract setting of order theory.
A benefit of isotonic regression is that it is not constrained by any functional form, such as the linearity imposed by linear regression, as long as the function is monotonic increasing. Another application is nonmetric multidimensional scaling , [ 1 ] where a low-dimensional embedding for data points is sought such that order of distances ...
Monotone likelihood-functions are used to construct median-unbiased estimators, using methods specified by Johann Pfanzagl and others. [ 2 ] [ 3 ] One such procedure is an analogue of the Rao–Blackwell procedure for mean-unbiased estimators : The procedure holds for a smaller class of probability distributions than does the Rao–Blackwell ...
The t distribution is often used as an alternative to the normal distribution as a model for data, which often has heavier tails than the normal distribution allows for; see e.g. Lange et al. [14] The classical approach was to identify outliers (e.g., using Grubbs's test) and exclude or downweight them in some way.
The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.
We have the canonical duality pairing between a distribution T on U and a test function (), which is denoted using angle brackets by {′ () (,) , := () One interprets this notation as the distribution T acting on the test function f {\displaystyle f} to give a scalar, or symmetrically as the test function f {\displaystyle f} acting on the ...
A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...
One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as (,) and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable = / / + has the density [1]