Search results
Results From The WOW.Com Content Network
The product of independent random variables X and Y may belong to the same family of distribution as X and Y: Bernoulli distribution and log-normal distribution. Example: If X 1 and X 2 are independent log-normal random variables with parameters (μ 1, σ 2 1) and (μ 2, σ 2 2) respectively, then X 1 X 2 is a log-normal random variable with ...
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln( X ) has a normal distribution.
In probability theory and statistics, the Exponential-Logarithmic (EL) distribution is a family of lifetime distributions with decreasing failure rate, defined on the interval [0, ∞). This distribution is parameterized by two parameters p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} and β > 0 {\displaystyle \beta >0} .
In some cases, such as the air conditioner example, the distribution of survival times may be approximated well by a function such as the exponential distribution. Several distributions are commonly used in survival analysis, including the exponential, Weibull, gamma, normal, log-normal, and log-logistic.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
The logarithm function is not defined for zero, so log probabilities can only represent non-zero probabilities. Since the logarithm of a number in (,) interval is negative, often the negative log probabilities are used. In that case the log probabilities in the following formulas would be inverted.
In science and engineering, a log–log graph or log–log plot is a two-dimensional graph of numerical data that uses logarithmic scales on both the horizontal and vertical axes. Power functions – relationships of the form y = a x k {\displaystyle y=ax^{k}} – appear as straight lines in a log–log graph, with the exponent corresponding to ...
Every distribution with log-concave density is a maximum entropy probability distribution with specified mean μ and Deviation risk measure D. [2] As it happens, many common probability distributions are log-concave. Some examples: [3] the normal distribution and multivariate normal distributions, the exponential distribution,