When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    Arc length s of a logarithmic spiral as a function of its parameter θ. Arc length is the distance between two points along a section of a curve. Development of a formulation of arc length suitable for applications to mathematics and the sciences is a focus of calculus.

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The arc length of the curve is given by [] = ... Calculus of variations. Example problems. Mathematics - Calculus of Variations and Integral Equations.

  4. Functional (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Functional_(mathematics)

    The arc length functional has as its domain the vector space of rectifiable curves – a subspace of ([,],) – and outputs a real scalar. This is an example of a non-linear functional.

  5. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    If (u(t), v(t)), a ≤ t ≤ b represents a parametrized curve on this surface then its arc length can be calculated as the integral: ′ + ′ ′ + ′ (). The first fundamental form may be viewed as a family of positive definite symmetric bilinear forms on the tangent plane at each point of the surface depending smoothly on the point.

  6. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    The arc length (length of a line segment) defined by a polar function is found by the integration over the curve r(φ). Let L denote this length along the curve starting from points A through to point B , where these points correspond to φ = a and φ = b such that 0 < b − a < 2 π .

  7. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    Toggle Examples subsection. 6.1 ... the local behavior of a curve and is commonly used in differential geometry and calculus. ... s is the arc length ...

  8. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    where c ∈ ℝ n is the center of the circle (irrelevant since it disappears in the derivatives), a,b ∈ ℝ n are perpendicular vectors of length ρ (that is, a · a = b · b = ρ 2 and a · b = 0), and h : ℝ → ℝ is an arbitrary function which is twice differentiable at t. The relevant derivatives of g work out to be

  9. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    Animation of the torsion and the corresponding rotation of the binormal vector. Let r be a space curve parametrized by arc length s and with the unit tangent vector T.If the curvature κ of r at a certain point is not zero then the principal normal vector and the binormal vector at that point are the unit vectors