Search results
Results From The WOW.Com Content Network
An AA size dry cell has a capacity of about 2,000 to 3,000 milliampere-hours. An average smartphone battery usually has between 2,500 and 4,000 milliampere-hours of electric capacity. Automotive car batteries vary in capacity but a large automobile propelled by an internal combustion engine would have about a 50-ampere-hour battery capacity.
A Battery: Eveready 742: 1.5 V: Metal tabs H: 101.6 L: 63.5 W: 63.5 Used to provide power to the filament of a vacuum tube. B Battery: Eveready 762-S: 45 V: Threaded posts H: 146 L: 104.8 W: 63.5 Used to supply plate voltage in vintage vacuum tube equipment. Origin of the term B+ for plate voltage power supplies.
battery, Zinc–Bromine flow (ZnBr) [30] 0.27: battery, Nickel–metal hydride (NiMH), High-Power design as used in cars [31] 0.250: 0.493: battery, Nickel–Cadmium (NiCd) [23] 0.14: 1.08: 80% [26] battery, Zinc–Carbon [23] 0.13: 0.331: battery, Lead–acid [23] 0.14: 0.36: battery, Vanadium redox: 0.09 [citation needed] 0.1188: 70-75% ...
Low self-discharge nickel–metal hydride battery: 500–1,500 [14] Lithium cobalt oxide: 90 500–1,000 Lithium–titanate: 85–90 6,000–30,000 to 90% capacity
An 18650 battery [1] or 1865 cell [2] is a cylindrical lithium-ion battery common in electronic devices. The batteries measure 18 mm (0.71 in) in diameter by 65 mm (2.56 in) in length, giving them the name 18650. [3] The battery comes in many nominal voltages depending on the specific chemistry used.
Battery discharge profiles are often described in terms of a factor of battery capacity. For example, a battery with a nominal capacity quoted in ampere-hours (Ah) at a C/10 rated discharge current (derived in amperes) may safely provide a higher discharge current – and therefore higher power-to-weight ratio – but only with a lower energy ...
The watt, kilogram, joule, and the second are part of the International System of Units (SI). The hour is not, though it is accepted for use with the SI. Since a watt equals one joule per second and because one hour equals 3600 seconds, one watt-hour per kilogram can be expressed in SI units as 3600 joules per kilogram.
The sum of the molecular masses of the reactants is 642.6 g/mole, so theoretically a cell can produce two faradays of charge (192,971 coulombs) from 642.6 g of reactants, or 83.4 ampere-hours per kilogram for a 2-volt cell (or 13.9 ampere-hours per kilogram for a 12-volt battery). This comes to 167 watt-hours per kilogram of reactants, but in ...