When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scattering - Wikipedia

    en.wikipedia.org/wiki/Scattering

    The main difference between the effects of single and multiple scattering is that single scattering can usually be treated as a random phenomenon, whereas multiple scattering, somewhat counterintuitively, can be modeled as a more deterministic process because the combined results of a large number of scattering events tend to average out.

  3. Dispersion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(chemistry)

    Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection. [4]

  4. Light scattering by particles - Wikipedia

    en.wikipedia.org/wiki/Light_scattering_by_particles

    Multiple-scattering effects of light scattering by particles are treated by radiative transfer techniques (see, e.g. atmospheric radiative transfer codes). The relative size of a scattering particle is defined by its size parameter x, which is the ratio of its characteristic dimension to its wavelength:

  5. Dispersion stability - Wikipedia

    en.wikipedia.org/wiki/Dispersion_stability

    Multiple light scattering coupled with vertical scanning is one of many techniques monitor the dispersion state of a product, identifying and quantifying destabilisation phenomena. [2] [3] [4] It works on concentrated dispersions without dilution. When light is sent through the sample, it is backscattered by the particles / droplets.

  6. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Dispersion of waves on water was studied by Pierre-Simon Laplace in 1776. [7] The universality of the Kramers–Kronig relations (1926–27) became apparent with subsequent papers on the dispersion relation's connection to causality in the scattering theory of all types of waves and particles. [8]

  7. Spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Spectroscopy

    The coupling of the two states is strongest when the energy of the source matches the energy difference between the two states. The energy E of a photon is related to its frequency ν by E = hν where h is the Planck constant, and so a spectrum of the system response vs. photon frequency will peak at the resonant frequency or energy.

  8. Rayleigh scattering - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_scattering

    Rayleigh scattering causes the blue color of the daytime sky and the reddening of the Sun at sunset. Rayleigh scattering (/ ˈ r eɪ l i / RAY-lee) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation.

  9. Tyndall effect - Wikipedia

    en.wikipedia.org/wiki/Tyndall_effect

    Tyndall scattering, i.e. colloidal particle scattering, [7] is much more intense than Rayleigh scattering due to the bigger particle sizes involved. [ citation needed ] The importance of the particle size factor for intensity can be seen in the large exponent it has in the mathematical statement of the intensity of Rayleigh scattering.