When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat flux - Wikipedia

    en.wikipedia.org/wiki/Heat_flux

    In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density [1], heat-flow density or heat-flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m 2). It has both a direction and a magnitude, and so it is a vector quantity.

  3. Rate of heat flow - Wikipedia

    en.wikipedia.org/wiki/Rate_of_heat_flow

    The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...

  4. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient has SI units in watts per square meter per kelvin (W/(m 2 K)). The overall heat transfer rate for combined modes is usually expressed in terms of an overall conductance or heat transfer coefficient, U. In that case, the heat transfer rate is: ˙ = where (in SI units):

  5. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    The law of heat conduction, also known as Fourier's law (compare Fourier's heat equation), states that the rate of heat transfer through a material is proportional to the negative gradient in the temperature and to the area, at right angles to that gradient, through which the heat flows.

  6. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    An example of steady state conduction is the heat flow through walls of a warm house on a cold day—inside the house is maintained at a high temperature and, outside, the temperature stays low, so the transfer of heat per unit time stays near a constant rate determined by the insulation in the wall and the spatial distribution of temperature ...

  7. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...

  8. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The time rate of heat flow into a region V is given by a time-dependent quantity q t (V). We assume q has a density Q, so that () = (,) Heat flow is a time-dependent vector function H(x) characterized as follows: the time rate of heat flowing through an infinitesimal surface element with area dS and with unit normal vector n is () ().

  9. Energy flux - Wikipedia

    en.wikipedia.org/wiki/Energy_flux

    Energy flux is the rate of transfer of energy through a surface. The quantity is defined in two different ways, depending on the context: Total rate of energy transfer (not per unit area); [1] SI units: W = J⋅s −1. Specific rate of energy transfer (total normalized per unit area); [2] SI units: W⋅m −2 = J⋅m −2 ⋅s −1: