When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...

  3. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    The "step" line relates to Chi-Square test on the step level while variables included in the model step by step. Note that in the output a step chi-square, is the same as the block chi-square since they both are testing the same hypothesis that the tested variables enter on this step are non-zero.

  4. Confirmatory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Confirmatory_factor_analysis

    The chi-squared test indicates the difference between observed and expected covariance matrices. Values closer to zero indicate a better fit; smaller difference between expected and observed covariance matrices. [21] Chi-squared statistics can also be used to directly compare the fit of nested models to the data.

  5. Chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_test

    A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...

  6. Chi-square automatic interaction detection - Wikipedia

    en.wikipedia.org/wiki/Chi-square_automatic...

    Luchman, J.N.; CHAIDFOREST: Stata module to conduct random forest ensemble classification based on chi-square automated interaction detection (CHAID) as base learner, Available for free download, or type within Stata: ssc install chaidforest. IBM SPSS Decision Trees grows exhaustive CHAID trees as well as a few other types of trees such as CART.

  7. Yates's correction for continuity - Wikipedia

    en.wikipedia.org/wiki/Yates's_correction_for...

    This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5.

  8. Cramér's V - Wikipedia

    en.wikipedia.org/wiki/Cramér's_V

    The p-value for the significance of V is the same one that is calculated using the Pearson's chi-squared test. [citation needed] The formula for the variance of V=φ c is known. [3] In R, the function cramerV() from the package rcompanion [4] calculates V using the chisq.test function from the stats package.

  9. Hosmer–Lemeshow test - Wikipedia

    en.wikipedia.org/wiki/Hosmer–Lemeshow_test

    For the caffeine data, the Pearson chi-squared statistic is 17.46. The number of degrees of freedom is the number of doses (11) minus the number of parameters from the logistic regression (2), giving 11 - 2 = 9 degrees of freedom. The probability that a chi-square statistic with df=9 will be 17.46 or greater is p = 0.042.