When.com Web Search

  1. Ads

    related to: a is divisor of b means 0 in algebra 2 definition

Search results

  1. Results From The WOW.Com Content Network
  2. Zero divisor - Wikipedia

    en.wikipedia.org/wiki/Zero_divisor

    An element that is a left or a right zero divisor is simply called a zero divisor. [2] An element a that is both a left and a right zero divisor is called a two-sided zero divisor (the nonzero x such that ax = 0 may be different from the nonzero y such that ya = 0). If the ring is commutative, then the left and right zero divisors are the same.

  3. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    In abstract algebra, given a magma with binary operation ∗ (which could nominally be termed multiplication), left division of b by a (written a \ b) is typically defined as the solution x to the equation a ∗ x = b, if this exists and is unique. Similarly, right division of b by a (written b / a) is the solution y to the equation y ∗ a = b ...

  4. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.

  5. Domain (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Domain_(ring_theory)

    In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. [1] ( Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor).

  6. Divisibility (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Divisibility_(ring_theory)

    If one interprets the definition of divisor literally, every a is a divisor of 0, since one can take x = 0. Because of this, it is traditional to abuse terminology by making an exception for zero divisors: one calls an element a in a commutative ring a zero divisor if there exists a nonzero x such that ax = 0. [2]

  7. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    But in the ring Z/6Z, 2 is a zero divisor. This equation has two distinct solutions, x = 1 and x = 4, so the expression is undefined. In field theory, the expression is only shorthand for the formal expression ab −1, where b −1 is the multiplicative inverse of b.

  8. Division algebra - Wikipedia

    en.wikipedia.org/wiki/Division_algebra

    For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).

  9. Linear equation over a ring - Wikipedia

    en.wikipedia.org/wiki/Linear_equation_over_a_ring

    Let R be an effective commutative ring.. There is an algorithm for testing if an element a is a zero divisor: this amounts to solving the linear equation ax = 0.; There is an algorithm for testing if an element a is a unit, and if it is, computing its inverse: this amounts to solving the linear equation ax = 1.