When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  3. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  4. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    Commonly used metrics include the notions of precision and recall. In this context, precision is defined as the fraction of documents correctly retrieved compared to the documents retrieved (true positives divided by true positives plus false positives), using a set of ground truth relevant results selected by humans. Recall is defined as the ...

  5. Evaluation measures (information retrieval) - Wikipedia

    en.wikipedia.org/wiki/Evaluation_measures...

    By computing a precision and recall at every position in the ranked sequence of documents, one can plot a precision-recall curve, plotting precision () as a function of recall . Average precision computes the average value of p ( r ) {\displaystyle p(r)} over the interval from r = 0 {\displaystyle r=0} to r = 1 {\displaystyle r=1} : [ 7 ]

  6. Accuracy paradox - Wikipedia

    en.wikipedia.org/wiki/Accuracy_paradox

    The precision of ⁠ 10 / 10 + 990 ⁠ = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = ⁠ 2 × 0.01 × 1 / 0.01 + 1 ⁠ ≈ 2% (the recall being ⁠ 10 + 0 / 10 ⁠ = 1).

  7. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  8. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    The template for any binary confusion matrix uses the four kinds of results discussed above (true positives, false negatives, false positives, and true negatives) along with the positive and negative classifications.

  9. Neural scaling law - Wikipedia

    en.wikipedia.org/wiki/Neural_scaling_law

    MMLU performance vs AI scale BIG-Bench (hard) [6] performance vs AI scale. The performance of a neural network model is evaluated based on its ability to accurately predict the output given some input data. Common metrics for evaluating model performance include: [4] Accuracy, precision, recall, and F1 score for classification tasks