When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    An xy-Cartesian coordinate system rotated through an angle to an x′y′-Cartesian coordinate system In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and ...

  3. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

  4. Transformation geometry - Wikipedia

    en.wikipedia.org/wiki/Transformation_geometry

    The first real transformation is reflection in a line or reflection against an axis. The composition of two reflections results in a rotation when the lines intersect, or a translation when they are parallel. Thus through transformations students learn about Euclidean plane isometry. For instance, consider reflection in a vertical line and a ...

  5. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    The equations defining the transformation in two dimensions, which rotates the xy axes counterclockwise through an angle into the x′y′ axes, are derived as follows. In the xy system, let the point P have polar coordinates ( r , α ) {\displaystyle (r,\alpha )} .

  6. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  7. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    This isometry maps the x-axis to itself; any other line which is parallel to the x-axis gets reflected in the x-axis, so this system of parallel lines is left invariant. The isometry group generated by just a glide reflection is an infinite cyclic group. [1]

  8. Transformation (function) - Wikipedia

    en.wikipedia.org/wiki/Transformation_(function)

    In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: XX. [2] [3] [4] Examples include linear transformations of vector spaces and geometric transformations, which include projective transformations, affine transformations, and specific ...

  9. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In Euclidean geometry, the inversion of a point X with respect to a point P is a point X* such that P is the midpoint of the line segment with endpoints X and X*. In other words, the vector from X to P is the same as the vector from P to X*. The formula for the inversion in P is x* = 2p − x. where p, x and x* are the position vectors of P, X ...