Search results
Results From The WOW.Com Content Network
In survival analysis, the hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions characterised by two distinct levels of a treatment variable of interest. For example, in a clinical study of a drug, the treated population may die at twice the rate of the control population.
For example, the hazard ratio of company 5 to company 2 is (()) =. This means that, within the interval of study, company 5's risk of "death" is 0.33 ≈ 1/3 as large as company 2's risk of death. There are important caveats to mention about the interpretation:
This example of a survival tree analysis uses the R package "rpart". [8] The example is based on 146 stage C prostate cancer patients in the data set stagec in rpart. Rpart and the stagec example are described in Atkinson and Therneau (1997), [ 9 ] which is also distributed as a vignette of the rpart package.
This approach performs well for certain measures and can approximate arbitrary hazard functions relatively well, while not imposing stringent computational requirements. [5] When the covariates are omitted from the analysis, the maximum likelihood boils down to the Kaplan-Meier estimator of the survivor function. [6]
This distribution can be used to analyze time-to-event data in biomedical and public health areas and normally called survival analysis. In engineering, the time-to-event analysis is referred to as reliability theory and in business and economics it is called duration analysis. Other fields may use different names for the same analysis.
In full generality, the accelerated failure time model can be specified as [2] (|) = ()where denotes the joint effect of covariates, typically = ([+ +]). (Specifying the regression coefficients with a negative sign implies that high values of the covariates increase the survival time, but this is merely a sign convention; without a negative sign, they increase the hazard.)
If the hazard ratio is , there are total subjects, is the probability a subject in either group will eventually have an event (so that is the expected number of events at the time of the analysis), and the proportion of subjects randomized to each group is 50%, then the logrank statistic is approximately normal with mean () and variance 1. [4]
The Nelson–Aalen estimator is a non-parametric estimator of the cumulative hazard rate function in case of censored data or incomplete data. [1] It is used in survival theory, reliability engineering and life insurance to estimate the cumulative number of expected events. An "event" can be the failure of a non-repairable component, the death ...