Ads
related to: distance time graph test questions
Search results
Results From The WOW.Com Content Network
A time–distance diagram is a chart with two axes: one for time, the other for location. The units on either axis depend on the type of project: time can be expressed in minutes (for overnight construction of railroad modification projects such as the installation of switches) or years (for large construction projects); the location can be (kilo)meters, or other distinct units (such as ...
Minor testing (checking whether an input graph contains an input graph as a minor); the same holds with topological minors; Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in polynomial time.) Modularity maximization [5]
This graph is distance regular with intersection array {7,4,1;1,2,7} and automorphism group PGL(2,7). Some first examples of distance-regular graphs include: The complete graphs. The cycle graphs. The odd graphs. The Moore graphs. The collinearity graph of a regular near polygon. The Wells graph and the Sylvester graph.
A linear-time algorithm for finding a longest path in a tree was proposed by Edsger Dijkstra around 1960, while a formal proof of this algorithm was published in 2002. [15] Furthermore, a longest path can be computed in polynomial time on weighted trees, on block graphs, on cacti, [16] on bipartite permutation graphs, [17] and on Ptolemaic ...
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
The latter may occur even if the distance in the other direction between the same two vertices is defined. In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path ...
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]