Ads
related to: elevation between two points calculator
Search results
Results From The WOW.Com Content Network
Finding the geodesic between two points on the Earth, the so-called inverse geodetic problem, was the focus of many mathematicians and geodesists over the course of the 18th and 19th centuries with major contributions by Clairaut, [5] Legendre, [6] Bessel, [7] and Helmert English translation of Astron. Nachr. 4, 241–254 (1825).
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The Earth-centered, Earth-fixed coordinate system (acronym ECEF), also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth (including its surface, interior, atmosphere, and surrounding outer space) as X, Y, and Z measurements from its center of mass.
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
Thus, 32 points of 11.25° each makes a circle of 360°. An object at 022.5° relative would be 'two points off the starboard bow', an object at 101.25° relative would be 'one point abaft the starboard beam' and an object at 213.75° relative would be 'three points on the port quarter'. This method is only used for a relative bearing.
If the two points are at the same level (relative to a specific datum), the slant distance equals the horizontal distance. An example of slant range is the distance to an aircraft flying at high altitude with respect to that of the radar antenna. The slant range (1) is the hypotenuse of the triangle represented by the altitude of the aircraft ...
This can be calculated for a given peak in the following manner: for every path connecting the peak to higher terrain, find the lowest point on the path; the key col (or highest saddle, or linking col, or link) is defined as the highest of these points, along all connecting paths; the prominence is the difference between the elevation of the ...