Ad
related to: translation protein synthesis
Search results
Results From The WOW.Com Content Network
The process of amino acid building to create protein in translation is a subject of various physic models for a long time starting from the first detailed kinetic models such as [24] or others taking into account stochastic aspects of translation and using computer simulations. Many chemical kinetics-based models of protein synthesis have been ...
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.
The eIF2 alpha subunit is characterized by an OB-fold domain and two beta strands. This subunit helps to regulate translation, as it becomes phosphorylated to inhibit protein synthesis. [2] The eIF4F complex supports the cap-dependent translation initiation process and is composed of the initiation factors eIF4A, eIF4E, and eIF4G.
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences. [1] Protein synthesis can be divided broadly into two phases: transcription and translation. During transcription, a section of DNA encoding a protein, known as a gene, is converted into a molecule called messenger RNA (mRNA).
Eukaryotic initiation factors (eIFs) are proteins or protein complexes involved in the initiation phase of eukaryotic translation.These proteins help stabilize the formation of ribosomal preinitiation complexes around the start codon and are an important input for post-transcription gene regulation.
The Kozak consensus sequence (Kozak consensus or Kozak sequence) is a nucleic acid motif that functions as the protein translation initiation site in most eukaryotic mRNA transcripts. [1] Regarded as the optimum sequence for initiating translation in eukaryotes , the sequence is an integral aspect of protein regulation and overall cellular ...
Phosphorylation is highly effective for controlling the enzyme activity and is the most common change after translation. [ 2 ] Many eukaryotic and prokaryotic proteins also have carbohydrate molecules attached to them in a process called glycosylation , which can promote protein folding and improve stability as well as serving regulatory functions.