Search results
Results From The WOW.Com Content Network
Matching is a statistical technique that evaluates the effect of a treatment by comparing the treated and the non-treated units in an observational study or quasi-experiment (i.e. when the treatment is not randomly assigned).
For two matched samples, it is a paired difference test like the paired Student's t-test (also known as the "t-test for matched pairs" or "t-test for dependent samples"). The Wilcoxon test is a good alternative to the t-test when the normal distribution of the differences between paired individuals cannot be assumed. Instead, it assumes a ...
Paired samples t-tests typically consist of a sample of matched pairs of similar units, or one group of units that has been tested twice (a "repeated measures" t-test). A typical example of the repeated measures t -test would be where subjects are tested prior to a treatment, say for high blood pressure, and the same subjects are tested again ...
A paired difference test, better known as a paired comparison, is a type of location test that is used when comparing two sets of paired measurements to assess whether their population means differ. A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for ...
In some cases, the data sets are paired, meaning there is an obvious and meaningful one-to-one correspondence between the data in the first set and the data in the second set, compare Blocking (statistics). For example, paired data can arise from measuring a single set of individuals at different points in time. [1]
The sign test is a statistical test for consistent differences between pairs of observations, such as the weight of subjects before and after treatment. Given pairs of observations (such as weight pre- and post-treatment) for each subject, the sign test determines if one member of the pair (such as pre-treatment) tends to be greater than (or less than) the other member of the pair (such as ...
Repeated measures design is a research design that involves multiple measures of the same variable taken on the same or matched subjects either under different conditions or over two or more time periods. [1]
Since the paired notions of type I errors (or "false positives") and type II errors (or "false negatives") that were introduced by Neyman and Pearson are now widely used, their choice of terminology ("errors of the first kind" and "errors of the second kind"), has led others to suppose that certain sorts of mistakes that they have identified ...