When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form. [4] [5] Bernoulli's principle can be derived from the principle of conservation of energy. This states that, in a steady flow, the sum of all forms of energy in a fluid is the same ...

  3. Venturi effect - Wikipedia

    en.wikipedia.org/wiki/Venturi_effect

    The mass flow rate for a compressible fluid will increase with increased upstream pressure, which will increase the density of the fluid through the constriction (though the velocity will remain constant). This is the principle of operation of a de Laval nozzle. Increasing source temperature will also increase the local sonic velocity, thus ...

  4. Underwater acoustics - Wikipedia

    en.wikipedia.org/wiki/Underwater_acoustics

    The speed of sound (i.e., the longitudinal motion of wavefronts) is related to frequency and wavelength of a wave by =.. This is different from the particle velocity , which refers to the motion of molecules in the medium due to the sound, and relates to the plane wave pressure to the fluid density and sound speed by =.

  5. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    The choked velocity is a function of the upstream pressure but not the downstream. Although the velocity is constant, the mass flow rate is dependent on the density of the upstream gas, which is a function of the upstream pressure. Flow velocity reaches the speed of sound in the orifice, and it may be termed a sonic orifice.

  6. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    In fluid dynamics, dynamic pressure (denoted by q or Q and sometimes called velocity pressure) is the quantity defined by: [1] = where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s.

  7. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    Using another normalization for the same frequency dispersion relation, the figure on the right shows that for a fixed wavelength λ the phase speed c p increases with increasing water depth. [1] Until, in deep water with water depth h larger than half the wavelength λ (so for h/λ > 0.5 ), the phase velocity c p is independent of the water ...

  8. Turbulence - Wikipedia

    en.wikipedia.org/wiki/Turbulence

    The scale at which this happens is the Kolmogorov length scale. Via this energy cascade, turbulent flow can be realized as a superposition of a spectrum of flow velocity fluctuations and eddies upon a mean flow. The eddies are loosely defined as coherent patterns of flow velocity, vorticity and pressure.

  9. Physics of whistles - Wikipedia

    en.wikipedia.org/wiki/Physics_of_whistles

    As the flow speed increases (Reynolds number, Re) the frequency slowly climbs (nearly constant Strouhal number, St) but then the frequency jumps up abruptly to a higher stage. As the flow speed is later decreased, the frequency slowly decreases but then jumps down abruptly to a lower stage. This pattern is called a hysteresis loop.