When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many ...

  3. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    Power functions – relationships of the form = – appear as straight lines in a loglog graph, with the exponent corresponding to the slope, and the coefficient corresponding to the intercept. Thus these graphs are very useful for recognizing these relationships and estimating parameters. Any base can be used for the logarithm, though most ...

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The graph of the logarithm function log b (x) (blue) is obtained by reflecting the graph of the function b x (red) at the diagonal line (x = y). As discussed above, the function log b is the inverse to the exponential function .

  5. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  6. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    Such complex logarithm functions are analogous to the real logarithm function: >, which is the inverse of the real exponential function and hence satisfies e ln x = x for all positive real numbers x. Complex logarithm functions can be constructed by explicit formulas involving real-valued functions, by integration of 1 / z {\displaystyle 1/z ...

  7. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The graphs of the functions x ↦ a x are shown for a = 2 (dotted), a = e (blue), and a = 4 (dashed). They all pass through the point (0,1), but the red line (which has slope 1) is tangent to only e x there. The value of the natural log function for argument e, i.e. ln e, equals 1.

  8. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However, a multivalued function can be defined which satisfies most of the identities. It is usual to consider this as a function defined on a Riemann surface.

  9. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    A graph of logarithmic growth. In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1]