When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    For example, when =, it grows at 3 times its size, but when = it grows at 30% of its size. If an exponentially growing function grows at a rate that is 3 times is present size, then it always grows at a rate that is 3 times its present size. When it is 10 times as big as it is now, it will grow 10 times as fast.

  3. Growth function - Wikipedia

    en.wikipedia.org/wiki/Growth_function

    1. The domain is the real line .The set-family contains all the half-lines (rays) from a given number to positive infinity, i.e., all sets of the form {>} for some .For any set of real numbers, the intersection contains + sets: the empty set, the set containing the largest element of , the set containing the two largest elements of , and so on.

  4. Quadratic growth - Wikipedia

    en.wikipedia.org/wiki/Quadratic_growth

    In mathematics, a function or sequence is said to exhibit quadratic growth when its values are proportional to the square of the function argument or sequence position. "Quadratic growth" often means more generally "quadratic growth in the limit ", as the argument or sequence position goes to infinity – in big Theta notation , f ( x ) = Θ ...

  5. Kruskal's tree theorem - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_tree_theorem

    Take X to be a partially ordered set. If T 1, T 2 are rooted trees with vertices labeled in X, we say that T 1 is inf-embeddable in T 2 and write if there is an injective map F from the vertices of T 1 to the vertices of T 2 such that: For all vertices v of T 1, the label of v precedes the label of ();

  6. Double exponential function - Wikipedia

    en.wikipedia.org/wiki/Double_exponential_function

    f(x) = 10 10 x; f(0) = 10; f(1) = 10 10; f(2) = 10 100 = googol; f(3) = 10 1000; f(100) = 10 10 100 = googolplex. Factorials grow faster than exponential functions, but much more slowly than double exponential functions. However, tetration and the Ackermann function grow faster. See Big O notation for a comparison of the rate of growth of ...

  7. Friedman's SSCG function - Wikipedia

    en.wikipedia.org/wiki/Friedman's_SSCG_function

    The function SSCG(k) [1] denotes that length for simple subcubic graphs. The function SCG(k) [2] denotes that length for (general) subcubic graphs. The SCG sequence begins SCG(0) = 6, but then explodes to a value equivalent to f ε 2 *2 in the fast-growing hierarchy. The SSCG sequence begins slower than SCG, SSCG(0) = 2, SSCG(1) = 5, but then ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Ackermann function - Wikipedia

    en.wikipedia.org/wiki/Ackermann_function

    For small values of m like 1, 2, or 3, the Ackermann function grows relatively slowly with respect to n (at most exponentially). For m ≥ 4 {\displaystyle m\geq 4} , however, it grows much more quickly; even A ( 4 , 2 ) {\displaystyle A(4,2)} is about 2.00353 × 10 19 728 , and the decimal expansion of A ( 4 , 3 ) {\displaystyle A(4,3)} is ...