Search results
Results From The WOW.Com Content Network
The smallest singular value of a matrix A is σ n (A). It has the following properties for a non-singular matrix A: The 2-norm of the inverse matrix (A-1) equals the inverse σ n-1 (A). [1]: Thm.3.3 The absolute values of all elements in the inverse matrix (A-1) are at most the inverse σ n-1 (A). [1]: Thm.3.3
Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or degenerate. A square matrix with entries in a field is singular if and only if its determinant is zero.
Equivalently, a matrix with singular values that are either 0 or 1. Singular matrix: A square matrix that is not invertible. Unimodular matrix: An invertible matrix with entries in the integers (integer matrix) Necessarily the determinant is +1 or −1. Unipotent matrix: A square matrix with all eigenvalues equal to 1. Equivalently, A − I is ...
A square matrix A is called invertible or non-singular if there exists a matrix B such that [28] [29] = =, where I n is the n×n identity matrix with 1s on the main diagonal and 0s elsewhere. If B exists, it is unique and is called the inverse matrix of A , denoted A −1 .
Specifically, the singular value decomposition of an complex matrix is a factorization of the form =, where is an complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, is an complex unitary matrix, and is the conjugate transpose of . Such decomposition ...
Applicable to: m-by-n matrix A. Unit-Scale-Invariant Singular-Value Decomposition: =, where S is a unique nonnegative diagonal matrix of scale-invariant singular values, U and V are unitary matrices, is the conjugate transpose of V, and positive diagonal matrices D and E.
The above procedure shows why taking the pseudoinverse is not a continuous operation: if the original matrix has a singular value 0 (a diagonal entry of the matrix above), then modifying slightly may turn this zero into a tiny positive number, thereby affecting the pseudoinverse dramatically as we now have to take the ...
Singular matrices can also be factored, but not uniquely. Cholesky decomposition states that every real positive-definite symmetric matrix is a product of a lower-triangular matrix and its transpose, =.