Search results
Results From The WOW.Com Content Network
Consequently, if all singular values of a square matrix are non-degenerate and non-zero, then its singular value decomposition is unique, up to multiplication of a column of by a unit-phase factor and simultaneous multiplication of the corresponding column of by the same unit-phase factor.
The smallest singular value of a matrix A is σ n (A). It has the following properties for a non-singular matrix A: The 2-norm of the inverse matrix (A-1) equals the inverse σ n-1 (A). [1]: Thm.3.3 The absolute values of all elements in the inverse matrix (A-1) are at most the inverse σ n-1 (A). [1]: Thm.3.3
Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or degenerate. A square matrix with entries in a field is singular if and only if its determinant is zero.
A square matrix A is called invertible or non-singular if there exists a matrix B such that [28] [29] = =, where I n is the n×n identity matrix with 1s on the main diagonal and 0s elsewhere. If B exists, it is unique and is called the inverse matrix of A , denoted A −1 .
The singular value decomposition of a matrix is = where U and V are unitary, and is diagonal.The diagonal entries of are called the singular values of A.Because singular values are the square roots of the eigenvalues of , there is a tight connection between the singular value decomposition and eigenvalue decompositions.
Equivalently, a matrix with singular values that are either 0 or 1. Singular matrix: A square matrix that is not invertible. Unimodular matrix: An invertible matrix with entries in the integers (integer matrix) Necessarily the determinant is +1 or −1. Unipotent matrix: A square matrix with all eigenvalues equal to 1. Equivalently, A − I is ...
The spectral decomposition is a special case of the singular value decomposition, which states that any matrix can be expressed as = , where and are unitary matrices and is a diagonal matrix. The diagonal entries of Σ {\displaystyle \ \Sigma \ } are uniquely determined by A {\displaystyle \ A\ } and are known as the singular values of A ...
Singular matrices can also be factored, but not uniquely. Cholesky decomposition states that every real positive-definite symmetric matrix is a product of a lower-triangular matrix and its transpose, =.