Search results
Results From The WOW.Com Content Network
In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are known.
The geometric definition of constructible numbers motivates a corresponding definition of constructible points, which can again be described either geometrically or algebraically. A point is constructible if it can be produced as one of the points of a compass and straightedge construction (an endpoint of a line segment or crossing point of two ...
Publication by C. F. Gauss in Intelligenzblatt der allgemeinen Literatur-Zeitung. As 17 is a Fermat prime, the regular heptadecagon is a constructible polygon (that is, one that can be constructed using a compass and unmarked straightedge): this was shown by Carl Friedrich Gauss in 1796 at the age of 19. [1]
Articles related to constructible regular polygons, i.e. those amenable to compass and straightedge construction. Carl Friedrich Gauss proved that a regular polygon is constructible if its number of sides has no odd prime factors that are not Fermat primes, and no odd prime factors that are raised to a power of 2 or higher.
There are known to be an infinitude of constructible regular polygons with an even number of sides (because if a regular n-gon is constructible, then so is a regular 2n-gon and hence a regular 4n-gon, 8n-gon, etc.). However, there are only 5 known Fermat primes, giving only 31 known constructible regular n-gons with an odd number of sides.
Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.
The regular 257-gon (one with all sides equal and all angles equal) is of interest for being a constructible polygon: that is, it can be constructed using a compass and an unmarked straightedge. This is because 257 is a Fermat prime, being of the form 2 2 n + 1 (in this case n = 3).
The regular triacontagon is a constructible polygon, by an edge-bisection of a regular pentadecagon, and can also be constructed as a truncated pentadecagon, t{15}. A truncated triacontagon, t{30}, is a hexacontagon, {60}. One interior angle in a regular triacontagon is 168 degrees, meaning that one exterior angle would be 12°.