Search results
Results From The WOW.Com Content Network
A solenoid (/ ˈ s oʊ l ə n ɔɪ d / [1]) is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, [2] which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.
The device creates a magnetic field [1] from electric current, and uses the magnetic field to create linear motion. [2] [3] [4] In electromagnetic technology, a solenoid is an actuator assembly with a sliding ferromagnetic plunger inside the coil. Without power, the plunger extends for part of its length outside the coil; applying power pulls ...
One important property of the B-field produced this way is that magnetic B-field lines neither start nor end (mathematically, B is a solenoidal vector field); a field line may only extend to infinity, or wrap around to form a closed curve, or follow a never-ending (possibly chaotic) path. [34]
Its includes an auxiliary winding composed of a copper ring called a shading ring (or shading coil with more than one turn). [5] The auxiliary winding produces a secondary magnetic flux which, along with the flux from the primary coil, forms a rotating magnetic field suitable for applying torque to and rotating the rotor. [6]
If the magnetic field is applied by a solenoid, the sensor output is proportional to the product of the current through the solenoid and the sensor voltage. As most applications requiring computation are now performed by small digital computers , the remaining useful application is in power sensing, which combines current sensing with voltage ...
The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it. Faraday's law of induction makes use of the magnetic flux Φ B through a region of space enclosed by a wire loop.
In a case when the external magnetic field is non-uniform, there will be a force, proportional to the magnetic field gradient, acting on the magnetic moment itself. There are two expressions for the force acting on a magnetic dipole, depending on whether the model used for the dipole is a current loop or two monopoles (analogous to the electric ...
The strongest continuous magnetic fields on Earth have been produced by Bitter magnets. The strongest continuous field achieved solely with a resistive magnet is 41.5 tesla as of 22 August 2017 [update] , produced by a Bitter electromagnet at the National High Magnetic Field Laboratory in Tallahassee , Florida .