When.com Web Search

  1. Ads

    related to: 12x7 long multiplication problems

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    Some chips implement long multiplication, in hardware or in microcode, for various integer and floating-point word sizes. In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying

  3. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  4. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    Applications of the Schönhage–Strassen algorithm include large computations done for their own sake such as the Great Internet Mersenne Prime Search and approximations of π, as well as practical applications such as Lenstra elliptic curve factorization via Kronecker substitution, which reduces polynomial multiplication to integer ...

  5. Wallace tree - Wikipedia

    en.wikipedia.org/wiki/Wallace_tree

    As making the partial products is () and the final addition is (⁡), the total multiplication is (⁡), not much slower than addition. From a complexity theoretic perspective, the Wallace tree algorithm puts multiplication in the class NC 1. The downside of the Wallace tree, compared to naive addition of partial products, is its much higher ...

  6. Online matrix-vector multiplication problem - Wikipedia

    en.wikipedia.org/wiki/Online_matrix-vector...

    The online vector-matrix-vector problem (OuMv) is a variant of OMv where the algorithm receives, at each round , two Boolean vectors and , and returns the product . This version has the benefit of returning a Boolean value at each round instead of a vector of an n {\displaystyle n} -dimensional Boolean vector.

  7. Toom–Cook multiplication - Wikipedia

    en.wikipedia.org/wiki/Toom–Cook_multiplication

    Toom-1.5 (k m = 2, k n = 1) is still degenerate: it recursively reduces one input by halving its size, but leaves the other input unchanged, hence we can make it into a multiplication algorithm only if we supply a 1 × n multiplication algorithm as a base case (whereas the true Toom–Cook algorithm reduces to constant-size base cases). It ...