Ads
related to: example of logistic regression
Search results
Results From The WOW.Com Content Network
Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.
In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]
Logistic regression as described above works satisfactorily when the number of strata is small relative to the amount of data. If we hold the number of strata fixed and increase the amount of data, estimates of the model parameters ( α i {\displaystyle \alpha _{i}} for each stratum and the vector β {\displaystyle {\boldsymbol {\beta ...
Types of discriminative models include logistic regression (LR), conditional random fields (CRFs), decision trees among many others. Generative model approaches which uses a joint probability distribution instead, include naive Bayes classifiers, Gaussian mixture models, variational autoencoders, generative adversarial networks and others.
In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...
The resulting model is known as logistic regression (or multinomial logistic regression in the case that K-way rather than binary values are being predicted). For the Bernoulli and binomial distributions, the parameter is a single probability, indicating the likelihood of occurrence of a single event.
The logit in logistic regression is a special case of a link function in a generalized linear model: it is the canonical link function for the Bernoulli distribution. More abstractly, the logit is the natural parameter for the binomial distribution; see Exponential family § Binomial distribution.