When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    For instance, a two's-complement addition of 127 and −128 gives the same binary bit pattern as an unsigned addition of 127 and 128, as can be seen from the 8-bit two's complement table. An easier method to get the negation of a number in two's complement is as follows:

  3. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  4. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The nines' complement of a decimal digit is the number that must be added to it to produce 9; the nines' complement of 3 is 6, the nines' complement of 7 is 2, and so on, see table. To form the nines' complement of a larger number, each digit is replaced by its nines' complement.

  5. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  6. Bit numbering - Wikipedia

    en.wikipedia.org/wiki/Bit_numbering

    This table illustrates an example of an 8 bit signed decimal value using the two's complement method. The MSb most significant bit has a negative weight in signed integers, in this case -2 7 = -128. The other bits have positive weights. The lsb (least significant bit) has weight 1. The signed value is in this case -128+2 = -126.

  7. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    Fixed-point formatting can be useful to represent fractions in binary. The number of bits needed for the precision and range desired must be chosen to store the fractional and integer parts of a number. For instance, using a 32-bit format, 16 bits may be used for the integer and 16 for the fraction.

  8. Sign bit - Wikipedia

    en.wikipedia.org/wiki/Sign_bit

    Two's Complement is by far the most common format for signed integers. In Two's Complement, the sign bit has the weight -2 w-1 where w is equal to the bits position in the number. [1] With an 8-bit integer, the sign bit would have the value of -2 8-1, or -128. Due to this value being larger than all the other bits combined, having this bit set ...

  9. Q (number format) - Wikipedia

    en.wikipedia.org/wiki/Q_(number_format)

    That is, a 16-bit signed (two's complement) integer, that is implicitly multiplied by the scaling factor 2 −12. In particular, when n is zero, the numbers are just integers. If m is zero, all bits except the sign bit are fraction bits; then the range of the stored number is from −1.0 (inclusive) to +1.0 (exclusive).