When.com Web Search

  1. Ad

    related to: curvature and normal vectors pdf class 9 geography

Search results

  1. Results From The WOW.Com Content Network
  2. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    In summary, this has shown that, given a regular surface S, the Gaussian curvature of S can be regarded as a real-valued function on S; relative to a choice of unit normal vector field on all of S, the two principal curvatures and the mean curvature are also real-valued functions on S.

  3. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    T is the unit tangent, P the unit normal, and B the unit binormal. A Frenet frame is a moving reference frame of n orthonormal vectors e i (t) which are used to describe a curve locally at each point γ(t). It is the main tool in the differential geometric treatment of curves because it is far easier and more natural to describe local ...

  4. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The curvature is taken to be positive if the curve turns in the same direction as the surface's chosen normal, and otherwise negative. The directions in the normal plane where the curvature takes its maximum and minimum values are always perpendicular, if k 1 does not equal k 2, a result of Euler (1760), and are called principal directions.

  5. Normal plane (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_plane_(geometry)

    The normal section of a surface at a particular point is the curve produced by the intersection of that surface with a normal plane. [1] [2] [3] The curvature of the normal section is called the normal curvature. If the surface is bow or cylinder shaped, the maximum and the minimum of these curvatures are the principal curvatures.

  6. List of map projections - Wikipedia

    en.wikipedia.org/wiki/List_of_map_projections

    In normal aspect, these map the central meridian and parallels as straight lines. Other meridians are curves (or possibly straight from pole to equator), regularly spaced along parallels. Conic In normal aspect, conic (or conical) projections map meridians as straight lines, and parallels as arcs of circles. Pseudoconical

  7. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.

  8. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...

  9. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds.It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra.