Search results
Results From The WOW.Com Content Network
In linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder. [1]
A Householder reflection (or Householder transformation) is a transformation that takes a vector and reflects it about some plane or hyperplane. We can use this operation to calculate the QR factorization of an m-by-n matrix with m ≥ n. Q can be used to reflect a vector in such a way that all coordinates but one disappear.
For dense matrices, the left and right unitary matrices are obtained by a series of Householder reflections alternately applied from the left and right. This is known as Golub-Kahan bidiagonalization.
A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.
Reflections, like the Householder transformation. times a Hadamard matrix. In general, any operator in a Hilbert space that acts by permuting an orthonormal basis is unitary. In the finite dimensional case, such operators are the permutation matrices.
In linear algebra, the Householder operator is defined as follows. [1] Let be a finite-dimensional inner product space with inner product , and unit ...
The last image we have of Patrick Cagey is of his first moments as a free man. He has just walked out of a 30-day drug treatment center in Georgetown, Kentucky, dressed in gym clothes and carrying a Nike duffel bag.
In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.