Search results
Results From The WOW.Com Content Network
The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weather features such as clouds and hazes), all retained by Earth's gravity.
Capsules reenter aft-end first with the occupants lying down, as this is the optimum position for the human body to withstand the g-forces induced as the capsule impacts the atmosphere. The rounded shape (blunt body) of a capsule forms a shock wave that keeps most of the heat away from the heat shield, but a thermal protection system is still ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
The International Standard Atmosphere (ISA) is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. It has been established to provide a common reference for temperature and pressure and consists of tables of values at various altitudes ...
Atmospheric physics is the application of physics to the study of the atmosphere. Atmospheric physicists attempt to model Earth's atmosphere and the atmospheres of the other planets using fluid flow equations, chemical models, radiation balancing, and energy transfer processes in the atmosphere and underlying oceans and land.
Coupled atmosphere-ocean GCMs (AOGCMs, e.g. HadCM3, EdGCM, GFDL CM2.X, ARPEGE-Climat) [2] combine the two models. The first general circulation climate model that combined both oceanic and atmospheric processes was developed in the late 1960s at the NOAA Geophysical Fluid Dynamics Laboratory [ 3 ] AOGCMs represent the pinnacle of complexity in ...
Out of an average 340 watts per square meter (W/m 2) of solar irradiance at the top of the atmosphere, about 200 W/m 2 reaches the surface via windows, mostly the optical and infrared. Also, out of about 340 W/m 2 of reflected shortwave (105 W/m 2 ) plus outgoing longwave radiation (235 W/m 2 ), 80-100 W/m 2 exits to space through the infrared ...
As the main part of the 'window' spectrum, a clear electromagnetic spectral transmission 'window' can be seen between 8 and 14 μm. A fragmented part of the 'window' spectrum (one might say a louvred part of the 'window') can also be seen in the visible to mid-wavelength infrared between 0.2 and 5.5 μm.