When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rayleigh dissipation function - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_dissipation_function

    This function represents half of the rate of energy dissipation of the system through friction. The force of friction is negative the velocity gradient of the dissipation function, F → f = − ∇ v R ( v ) {\displaystyle {\vec {F}}_{f}=-\nabla _{v}R(v)} , analogous to a force being equal to the negative position gradient of a potential.

  3. Electric dipole moment - Wikipedia

    en.wikipedia.org/wiki/Electric_dipole_moment

    The electric field of the dipole is the negative gradient of the potential, leading to: [7] = (^) ^. Thus, although two closely spaced opposite charges are not quite an ideal electric dipole (because their potential at short distances is not that of a dipole), at distances much larger than their separation, their dipole moment p appears ...

  4. Potential gradient - Wikipedia

    en.wikipedia.org/wiki/Potential_gradient

    The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).

  5. Potential flow - Wikipedia

    en.wikipedia.org/wiki/Potential_flow

    Potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field , which is a valid approximation for several applications.

  6. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    By example, in physics, the electric field is the negative vector gradient of the electric potential. The directional derivative of a scalar function f(x) of the space vector x in the direction of the unit vector u (represented in this case as a column vector) is defined using the gradient as follows.

  7. Quantitative models of the action potential - Wikipedia

    en.wikipedia.org/wiki/Quantitative_models_of_the...

    Figure FHN: To mimick the action potential, the FitzHugh–Nagumo model and its relatives use a function g(V) with negative differential resistance (a negative slope on the I vs. V plot). For comparison, a normal resistor would have a positive slope, by Ohm's law I = GV, where the conductance G is the inverse of resistance G=1/R.

  8. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    The source-free part, B, can be similarly written: one only has to replace the scalar potential Φ(r) by a vector potential A(r) and the terms −∇Φ by +∇ × A, and the source density div v by the circulation density ∇ × v. This "decomposition theorem" is a by-product of the stationary case of electrodynamics.

  9. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...