When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    The Fermi level does not necessarily correspond to an actual energy level (in an insulator the Fermi level lies in the band gap), nor does it require the existence of a band structure. Nonetheless, the Fermi level is a precisely defined thermodynamic quantity, and differences in Fermi level can be measured simply with a voltmeter.

  3. Moss–Burstein effect - Wikipedia

    en.wikipedia.org/wiki/Moss–Burstein_effect

    In the case of a degenerate semiconductor, an electron from the top of the valence band can only be excited into conduction band above the Fermi level (which now lies in conduction band) since all the states below the Fermi level are occupied states. Pauli's exclusion principle forbids excitation into these occupied states. Thus we observe an ...

  4. Doping (semiconductor) - Wikipedia

    en.wikipedia.org/wiki/Doping_(semiconductor)

    The Fermi level is also usually indicated in the diagram. Sometimes the intrinsic Fermi level, E i, which is the Fermi level in the absence of doping, is shown. These diagrams are useful in explaining the operation of many kinds of semiconductor devices.

  5. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    E i: The intrinsic Fermi level may be included in a semiconductor, to show where the Fermi level would have to be for the material to be neutrally doped (i.e., an equal number of mobile electrons and holes). E imp: Impurity energy level. Many defects and dopants add states inside the band gap of a semiconductor or insulator. It can be useful to ...

  6. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    µ is the total chemical potential of electrons, or Fermi level (in semiconductor physics, this quantity is more often denoted E F). The Fermi level of a solid is directly related to the voltage on that solid, as measured with a voltmeter. Conventionally, in band structure plots the Fermi level is taken to be the zero of energy (an arbitrary ...

  7. Field effect (semiconductor) - Wikipedia

    en.wikipedia.org/wiki/Field_effect_(semiconductor)

    The example in the figure shows the Fermi level in the bulk material beyond the range of the applied field as lying close to the valence band edge. This position for the occupancy level is arranged by introducing impurities into the semiconductor.

  8. Semiconductor - Wikipedia

    en.wikipedia.org/wiki/Semiconductor

    In insulators and semiconductors the Fermi level is inside a band gap; however, in semiconductors the bands are near enough to the Fermi level to be thermally populated with electrons or holes. "intrin." indicates intrinsic semiconductors

  9. Surface photovoltage - Wikipedia

    en.wikipedia.org/wiki/Surface_photovoltage

    The surfaces of semiconductors are often depletion regions (or space charge regions) where a built-in electric field due to defects has swept out mobile charge carriers. A reduced carrier density means that the electronic energy band of the majority carriers is bent away from the Fermi level. This band-bending gives rise to a surface potential ...