Search results
Results From The WOW.Com Content Network
The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . [1] When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the ...
The fracture toughness and the critical strain energy release rate for plane stress are related by = where is the Young's modulus. If an initial crack size is known, then a critical stress can be determined using the strain energy release rate criterion.
The major surface strain has a minimum value when plane strain deformation occurs, which means that the corresponding minor surface strain is zero. Forming limits are a specific material property. Typical plane strain values range from 10% for high-strength grades and 50% or above for mild-strength materials and those with very good formability.
This critical value determined for mode I loading in plane strain is referred to as the critical fracture toughness of the material. K I c {\displaystyle K_{\mathrm {Ic} }} has units of stress times the root of a distance (e.g. MN/m 3/2 ).
Figure 7.1 Plane stress state in a continuum. In continuum mechanics, a material is said to be under plane stress if the stress vector is zero across a particular plane. When that situation occurs over an entire element of a structure, as is often the case for thin plates, the stress analysis is considerably simplified, as the stress state can be represented by a tensor of dimension 2 ...
This new material property was given the name fracture toughness and designated G Ic. Today, it is the critical stress intensity factor K Ic, found in the plane strain condition, which is accepted as the defining property in linear elastic fracture mechanics.
The three-point bending flexural test provides values for the modulus of elasticity in bending, flexural stress, flexural strain and the flexural stress–strain response of the material. This test is performed on a universal testing machine (tensile testing machine or tensile tester) with a three-point or four-point bend fixture.
The stress intensity factor at the crack tip of a compact tension specimen is [4] = [() / / + / / + /] where is the applied load, is the thickness of the specimen, is the crack length, and is the effective width of the specimen being the distance between the centreline of the holes and the backface of the coupon.