When.com Web Search

  1. Ad

    related to: simple exponential smoothing forecasting

Search results

  1. Results From The WOW.Com Content Network
  2. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time.

  3. Smoothing - Wikipedia

    en.wikipedia.org/wiki/Smoothing

    Smoothing may be distinguished from the related and partially overlapping concept of curve fitting in the following ways: . curve fitting often involves the use of an explicit function form for the result, whereas the immediate results from smoothing are the "smoothed" values with no later use made of a functional form if there is one;

  4. Forecasting - Wikipedia

    en.wikipedia.org/wiki/Forecasting

    Examples of quantitative forecasting methods are [citation needed] last period demand, simple and weighted N-Period moving averages, simple exponential smoothing, Poisson process model based forecasting [15] and multiplicative seasonal indexes. Previous research shows that different methods may lead to different level of forecasting accuracy.

  5. Moving average - Wikipedia

    en.wikipedia.org/wiki/Moving_average

    Smoothing of a noisy sine (blue curve) with a moving average (red curve). In statistics, a moving average (rolling average or running average or moving mean [1] or rolling mean) is a calculation to analyze data points by creating a series of averages of different selections of the full data set. Variations include: simple, cumulative, or ...

  6. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Exponential smoothing takes into account the difference in importance between older and newer data sets, as the more recent data is more accurate and valuable in predicting future values. In order to accomplish this, exponents are utilized to give newer data sets a larger weight in the calculations than the older sets.

  7. Spyros Makridakis - Wikipedia

    en.wikipedia.org/wiki/Spyros_Makridakis

    A 1979 paper by Makridakis and Hibon compared 111 time series from a variety of different sources in order to determine the relative accuracy of different forecasting methods, and came to the conclusion that simple methods, such as exponential smoothing, outperformed complicated ones.

  8. Makridakis Competitions - Wikipedia

    en.wikipedia.org/wiki/Makridakis_Competitions

    The NN-3 Competition found that the best ANN-based forecasts performed comparably with the best known forecasting methods, but were far more computationally intensive. It was also noted that many ANN-based techniques fared considerably worse than simple forecasting methods, despite greater theoretical potential for good performance.

  9. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    The default Expert Modeler feature evaluates a range of seasonal and non-seasonal autoregressive (p), integrated (d), and moving average (q) settings and seven exponential smoothing models. The Expert Modeler can also transform the target time-series data into its square root or natural log.