Search results
Results From The WOW.Com Content Network
An endothermic process may be a chemical process, such as dissolving ammonium nitrate (NH 4 NO 3) in water (H 2 O), or a physical process, such as the melting of ice cubes. [5] The opposite of an endothermic process is an exothermic process, one that releases or "gives out" energy, usually in the form of heat and sometimes as electrical energy. [1]
The opposite of an exothermic process is an endothermic process, one that absorbs energy, usually in the form of heat. [2] The concept is frequently applied in the physical sciences to chemical reactions where chemical bond energy is converted to thermal energy (heat).
Endothermic reactions absorb heat, while exothermic reactions release heat. Thermochemistry coalesces the concepts of thermodynamics with the concept of energy in the form of chemical bonds. Thermochemistry coalesces the concepts of thermodynamics with the concept of energy in the form of chemical bonds.
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings.One such equation involves the enthalpy change, which is denoted with In variable form, a thermochemical equation would appear similar to the following:
The reaction is usually endothermic as heat is required to break chemical bonds in the compound undergoing decomposition. If decomposition is sufficiently exothermic, a positive feedback loop is created producing thermal runaway and possibly an explosion or other chemical reaction. Thermal decomposition is a chemical reaction where heat is a ...
[2] A strongly exothermic reaction will usually also be exergonic because ΔH⚬ makes a major contribution to ΔG⚬. Most of the spectacular chemical reactions that are demonstrated in classrooms are exothermic and exergonic. The opposite is an endothermic reaction, which usually takes up heat and is driven by an entropy increase in the system.
An endotherm (from Greek ἔνδον endon "within" and θέρμη thermē "heat") is an organism that maintains its body at a metabolically favorable temperature, largely by the use of heat released by its internal bodily functions instead of relying almost purely on ambient heat.
Heat transfer is intensified. Mostly, because the area to volume ratio is large. As a result, endothermic and exothermic reactions can be thermostated easily and consistently. The temperature gradient can be steep, allowing efficient control over reaction time. Safety is increased: