Search results
Results From The WOW.Com Content Network
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.
Algorithmic inference gathers new developments in the statistical inference methods made feasible by the powerful computing devices widely available to any data analyst. Cornerstones in this field are computational learning theory , granular computing , bioinformatics , and, long ago, structural probability ( Fraser 1966 ).
Bayesian optimization algorithms operate by maintaining a probabilistic belief about throughout the optimization procedure; this often takes the form of a Gaussian process prior conditioned on observations. This belief then guides the algorithm in obtaining observations that are likely to advance the optimization process.
When ProbLog is asked to solve the "probabilistic inference" task, the query asks for the probability to stay dry on a weekend day. When solving the "most probable explanation" task, ProbLog will return the most likely reason for staying dry, i.e. because it is not raining or because the person has an umbrella.
Further if the above statement for algorithm is true for every concept and for every distribution over , and for all <, < then is (efficiently) PAC learnable (or distribution-free PAC learnable). We can also say that A {\displaystyle A} is a PAC learning algorithm for C {\displaystyle C} .
Variable elimination (VE) is a simple and general exact inference algorithm in probabilistic graphical models, such as Bayesian networks and Markov random fields. [1] It can be used for inference of maximum a posteriori (MAP) state or estimation of conditional or marginal distributions over a subset of variables.
Probabilistic programming (PP) is a programming paradigm based on the declarative specification of probabilistic models, for which inference is performed automatically. [1] Probabilistic programming attempts to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.
For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms can perform inference and learning in Bayesian networks.