Search results
Results From The WOW.Com Content Network
GPT-2 can generate thematically-appropriate text for a range of scenarios, even surreal ones like a CNN article about Donald Trump giving a speech praising the anime character Asuka Langley Soryu. Here, the tendency to generate nonsensical and repetitive text with increasing output length (even in the full 1.5B model) can be seen; in the second ...
A 380M-parameter model for machine translation uses two long short-term memories (LSTM). [23] Its architecture consists of two parts. The encoder is an LSTM that takes in a sequence of tokens and turns it into a vector. The decoder is another LSTM that converts the vector into a sequence
The Long Short-Term Memory (LSTM) cell can process data sequentially and keep its hidden state through time. Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs.
Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
Natural language generation (NLG) is a software process that produces natural language output. A widely-cited survey of NLG methods describes NLG as "the subfield of artificial intelligence and computational linguistics that is concerned with the construction of computer systems that can produce understandable texts in English or other human languages from some underlying non-linguistic ...
Schematic structure of an autoencoder with 3 fully connected hidden layers. The code (z, or h for reference in the text) is the most internal layer. Autoencoders are often trained with a single-layer encoder and a single-layer decoder, but using many-layered (deep) encoders and decoders offers many advantages. [2]