Search results
Results From The WOW.Com Content Network
A magnetohydrodynamic drive or MHD propulsor is a method for propelling seagoing vessels using only electric and magnetic fields with no moving parts, using magnetohydrodynamics. The working principle involves electrification of the propellant (gas or water) which can then be directed by a magnetic field, pushing the vehicle in the opposite ...
Engineering Magnetohydrodynamics. Dover Civil and Mechanical Engineering. Dover Publications. ISBN 978-0486450322. Hugo K. Messerle, Magnetohydrodynamic Power Generation, 1994, John Wiley, Chichester, Part of the UNESCO Energy Engineering Series (This is the source of the historical and generator design information).
Informally, Alfvén's theorem refers to the fundamental result in ideal magnetohydrodynamic theory that electrically conducting fluids and the magnetic fields within are constrained to move together in the limit of large magnetic Reynolds numbers (R m)—such as when the fluid is a perfect conductor or when velocity and length scales are infinitely large.
Magnetohydrodynamics (MHD) deals with what is a quasi-neutral fluid with very high conductivity. The fluid approximation implies that the focus is on macro length-and-time scales which are much larger than the collision length and collision time respectively.
In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .
Athena is a grid-based program for astrophysical magnetohydrodynamics (MHD). It was developed primarily for studies of the interstellar medium, star formation, and accretion flows. [3] Source code is available. EOF-Library EOF-Library is a software that couples Elmer FEM and OpenFOAM simulation packages.
The Grad–Shafranov equation (H. Grad and H. Rubin (1958); Vitalii Dmitrievich Shafranov (1966)) is the equilibrium equation in ideal magnetohydrodynamics (MHD) for a two dimensional plasma, for example the axisymmetric toroidal plasma in a tokamak. This equation takes the same form as the Hicks equation from fluid dynamics. [1]
Until these observations, magnetoelectrochemistry was an esoteric curiosity, though this field has had a rapid development in the past years and is now an active area of research. Other scientific fields which contributed to the development of magnetoelectrochemistry are magnetohydrodynamics and convective diffusion theory. [citation needed]