Search results
Results From The WOW.Com Content Network
In biology, cell signaling (cell signalling in British English) is the process by which a cell interacts with itself, other cells, and the environment. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Typically, the signaling process involves three components: the signal, the receptor, and the effector.
In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function.The name organelle comes from the idea that these structures are parts of cells, as organs are to the body, hence organelle, the suffix -elle being a diminutive.
A third approach that structural biologists take to understanding structure is bioinformatics to look for patterns among the diverse sequences that give rise to particular shapes. Researchers often can deduce aspects of the structure of integral membrane proteins based on the membrane topology predicted by hydrophobicity analysis.
Structure of a typical animal cell Structure of a typical plant cell. Plants, animals, fungi, slime moulds, protozoa, and algae are all eukaryotic. These cells are about fifteen times wider than a typical prokaryote and can be as much as a thousand times greater in volume.
Light micrograph of a moss's leaf cells at 400X magnification. The following outline is provided as an overview of and topical guide to cell biology: . Cell biology – A branch of biology that includes study of cells regarding their physiological properties, structure, and function; the organelles they contain; interactions with their environment; and their life cycle, division, and death.
In biochemistry and pharmacology, receptors are chemical structures, composed of protein, that receive and transduce signals that may be integrated into biological systems. [1] These signals are typically chemical messengers [nb 1] which bind to a receptor and produce physiological responses such as change in the electrical activity of a cell.
The enzyme itself is not used up in the process and is free to catalyze the same reaction with a new set of substrates. Using various modifiers, the activity of the enzyme can be regulated, enabling control of the biochemistry of the cell as a whole. The structure of proteins is traditionally described in a hierarchy of four levels.
The active non-equilibrium and non-linear rheological properties of cellular assemblies have been keen point of research in recent times. [23] [24] Another point of interest has been how cell cycle-related changes in cytoskeletal activity affect global cell properties, such as intracellular pressure increase during mitotic cell rounding. [25]