When.com Web Search

  1. Ads

    related to: partial differential equations tutorial point of service

Search results

  1. Results From The WOW.Com Content Network
  2. PDE surface - Wikipedia

    en.wikipedia.org/wiki/PDE_surface

    PDE surfaces use partial differential equations to generate a surface which usually satisfy a mathematical boundary value problem. PDE surfaces were first introduced into the area of geometric modelling and computer graphics by two British mathematicians, Malcolm Bloor and Michael Wilson.

  3. Method of lines - Wikipedia

    en.wikipedia.org/wiki/Method_of_lines

    Thus it cannot be used directly on purely elliptic partial differential equations, such as Laplace's equation. However, MOL has been used to solve Laplace's equation by using the method of false transients. [1] [8] In this method, a time derivative of the dependent variable is added to Laplace’s equation. Finite differences are then used to ...

  4. Partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Partial_differential_equation

    In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.

  5. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  6. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Through the superposition principle, given a linear ordinary differential equation (ODE), =, one can first solve =, for each s, and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of L.

  7. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation. The method is to reduce a partial differential equation (PDE) to a family of ordinary differential equations (ODE) along which the solution can be integrated from some initial data ...

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    These equations for solution of a first-order partial differential equation are identical to the Euler–Lagrange equations if we make the identification = ˙ ˙. We conclude that the function ψ {\displaystyle \psi } is the value of the minimizing integral A {\displaystyle A} as a function of the upper end point.

  9. First-order partial differential equation - Wikipedia

    en.wikipedia.org/wiki/First-order_partial...

    The general solution to the first order partial differential equation is a solution which contains an arbitrary function. But, the solution to the first order partial differential equations with as many arbitrary constants as the number of independent variables is called the complete integral. The following n-parameter family of solutions