When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    An example of a stationary point of inflection is the point (0, 0) on the graph of y = x 3. The tangent is the x-axis, which cuts the graph at this point. An example of a non-stationary point of inflection is the point (0, 0) on the graph of y = x 3 + ax, for any nonzero a. The tangent at the origin is the line y = ax, which cuts the graph at ...

  3. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    The x-coordinates of the red circles are stationary points; the blue squares are inflection points. In mathematics, a critical point is the argument of a function where the function derivative is zero (or undefined, as specified below). The value of the function at a critical point is a critical value. [1]

  4. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points.. In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero.

  5. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The points P 1, P 2, and P 3 (in blue) are collinear and belong to the graph of x 3 + ⁠ 3 / 2 ⁠ x 2 − ⁠ 5 / 2 ⁠ x + ⁠ 5 / 4 ⁠. The points T 1, T 2, and T 3 (in red) are the intersections of the (dotted) tangent lines to the graph at these points with the graph itself. They are collinear too.

  6. Cubic plane curve - Wikipedia

    en.wikipedia.org/wiki/Cubic_plane_curve

    However, only three of these points may be real, so that the others cannot be seen in the real projective plane by drawing the curve. The nine inflection points of a non-singular cubic have the property that every line passing through two of them contains exactly three inflection points. The real points of cubic curves were studied by Isaac ...

  7. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    If the second derivative of a function changes sign, the graph of the function will switch from concave down to concave up, or vice versa. A point where this occurs is called an inflection point. Assuming the second derivative is continuous, it must take a value of zero at any inflection point, although not every point where the second ...

  8. Talk:Inflection point - Wikipedia

    en.wikipedia.org/wiki/Talk:Inflection_point

    The tangent is the x-axis, which cuts the graph at this point." But there is no way for the reader to understand how this relates to inflexion points. For example, why don't we also write "An example of a local minimum is the point (0,0) on the graph y = x².

  9. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is a bounded, differentiable, real function that is defined for all real input values and has a non-negative derivative at each point [1] [2] and exactly one inflection point. Properties