Ad
related to: partitioned matrix calculator
Search results
Results From The WOW.Com Content Network
In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. [1] [2]Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices.
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
In mathematics, a block matrix pseudoinverse is a formula for the pseudoinverse of a partitioned matrix. This is useful for decomposing or approximating many algorithms updating parameters in signal processing , which are based on the least squares method.
More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:
Partitioned matrix: A matrix partitioned into sub-matrices, or equivalently, a matrix whose entries are themselves matrices rather than scalars. Synonym for block matrix. Parisi matrix: A block-hierarchical matrix. It consist of growing blocks placed along the diagonal, each block is itself a Parisi matrix of a smaller size.
In mathematics, the Khatri–Rao product or block Kronecker product of two partitioned matrices and is defined as [1] [2] [3] = in which the ij-th block is the m i p i × n j q j sized Kronecker product of the corresponding blocks of A and B, assuming the number of row and column partitions of both matrices is equal.
The partition on the right-hand side should be the transpose of the partition on the left-hand side, in the sense that if A is an m-by-n block then E should be an n-by-m block. The statement of the nullity theorem is now that the nullities of the blocks on the right equal the nullities of the blocks on the left ( Strang & Nguyen 2004 ):
Transfer-matrix method may refer to: Transfer-matrix method (statistical mechanics) , a mathematical technique used to write the partition function into a simpler form. Transfer-matrix method (optics) , a method to analyze the propagation of electromagnetic or acoustic waves through a stratified medium.