Search results
Results From The WOW.Com Content Network
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]
In machine learning and data mining, quantification (variously called learning to quantify, or supervised prevalence estimation, or class prior estimation) is the task of using supervised learning in order to train models (quantifiers) that estimate the relative frequencies (also known as prevalence values) of the classes of interest in a sample of unlabelled data items.
These models are designed to assess the likelihood or probability of an instance belonging to different classes. In the context of evaluating probabilistic classifiers, alternative evaluation metrics have been developed to properly assess the performance of these models. These metrics take into account the probabilistic nature of the classifier ...
Maximum entropy classifier (aka logistic regression, multinomial logistic regression): Note that logistic regression is an algorithm for classification, despite its name. (The name comes from the fact that logistic regression uses an extension of a linear regression model to model the probability of an input being in a particular class.)
These parameters may be adjusted by optimizing performance on a subset (called a validation set) of the training set, or via cross-validation. Evaluate the accuracy of the learned function. After parameter adjustment and learning, the performance of the resulting function should be measured on a test set that is separate from the training set.
It is shown that this is directly equivalent to decreasing the learning rate in gradient boosting = + (), where decreasing improves the regularization of the boosted classifier. The theory makes it clear that when a learning rate of γ {\displaystyle \gamma } is used, the correct formula for retrieving the posterior probability is now η = f ...