When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    GraphRAG with a knowledge graph combining access patterns for unstructured, structured, and mixed data GraphRAG [ 40 ] (coined by Microsoft Research ) is a technique that extends RAG with the use of a knowledge graph (usually, LLM-generated) to allow the model to connect disparate pieces of information, synthesize insights, and holistically ...

  3. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    These models have the generality to distinguish the type of entity and relation, temporal information, path information, underlay structured information, [18] and resolve the limitations of distance-based and semantic-matching-based models in representing all the features of a knowledge graph. [1] The use of deep learning for knowledge graph ...

  4. Knowledge graph - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph

    In knowledge representation and reasoning, a knowledge graph is a knowledge base that uses a graph-structured data model or topology to represent and operate on data. Knowledge graphs are often used to store interlinked descriptions of entities – objects, events, situations or abstract concepts – while also encoding the free-form semantics ...

  5. Retrieval-augmented generation - Wikipedia

    en.wikipedia.org/wiki/Retrieval-augmented_generation

    Retrieval-Augmented Generation (RAG) is a technique that grants generative artificial intelligence models information retrieval capabilities. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to augment information drawn from its own vast, static training data.

  6. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation.LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.

  7. Sora (text-to-video model) - Wikipedia

    en.wikipedia.org/wiki/Sora_(text-to-video_model)

    Re-captioning is used to augment training data, by using a video-to-text model to create detailed captions on videos. [7] OpenAI trained the model using publicly available videos as well as copyrighted videos licensed for the purpose, but did not reveal the number or the exact source of the videos. [5]

  8. Category:Knowledge graphs - Wikipedia

    en.wikipedia.org/wiki/Category:Knowledge_graphs

    A knowledge graph is a knowledge base that uses a graph-structured data model. Common applications are for gathering lightly-structured associations between topic-specific knowledge in a range of disciplines, which each have their own more detailed data shapes and schemas .

  9. Generative artificial intelligence - Wikipedia

    en.wikipedia.org/wiki/Generative_artificial...

    Generative artificial intelligence (generative AI, GenAI, [1] or GAI) is a subset of artificial intelligence that uses generative models to produce text, images, videos, or other forms of data. [2] [3] [4] These models learn the underlying patterns and structures of their training data and use them to produce new data [5] [6] based on the input ...