When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thermal expansion - Wikipedia

    en.wikipedia.org/wiki/Thermal_expansion

    A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...

  3. Boussinesq approximation (buoyancy) - Wikipedia

    en.wikipedia.org/wiki/Boussinesq_approximation...

    where α is the coefficient of thermal expansion. [ 2 ] : 128–129 The Boussinesq approximation states that the density variation is only important in the buoyancy term. If F = ρ g {\displaystyle F=\rho \mathbf {g} } is the gravitational body force, the resulting conservation equation is [ 2 ] : 129

  4. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    To distinguish these two thermal expansion equations of state, the latter one is called pressure-dependent thermal expansion equation of state. To deveop the pressure-dependent thermal expansion equation of state, in an compression process at room temperature from (V 0, T 0, P 0) to (V 1, T 0,P 1), a general form of volume is expressed as

  5. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    This provides an expression for the Joule–Thomson coefficient in terms of the commonly available properties heat capacity, molar volume, and thermal expansion coefficient. It shows that the Joule–Thomson inversion temperature, at which μ J T {\displaystyle \mu _{\mathrm {JT} }} is zero, occurs when the coefficient of thermal expansion is ...

  6. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):

  7. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    is pressure, temperature, volume, entropy, coefficient of thermal expansion, compressibility, heat capacity at constant volume, heat capacity at constant pressure. Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials .

  8. Thermal stress - Wikipedia

    en.wikipedia.org/wiki/Thermal_stress

    Temperature gradients, thermal expansion or contraction and thermal shocks are things that can lead to thermal stress. This type of stress is highly dependent on the thermal expansion coefficient which varies from material to material. In general, the greater the temperature change, the higher the level of stress that can occur.

  9. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    The two first partial derivatives of the vdW equation are | = = | = + = where = is the isothermal compressibility (a measure of the relative increase of volume from an increase of pressure, at constant temperature), and = is the coefficient of thermal expansion (a measure of the relative increase of volume from an increase of temperature, at ...