Search results
Results From The WOW.Com Content Network
Circular buffering makes a good implementation strategy for a queue that has fixed maximum size. Should a maximum size be adopted for a queue, then a circular buffer is a completely ideal implementation; all queue operations are constant time. However, expanding a circular buffer requires shifting memory, which is comparatively costly.
A queue may be implemented as circular buffers and linked lists, or by using both the stack pointer and the base pointer. Queues provide services in computer science , transport , and operations research where various entities such as data, objects, persons, or events are stored and held to be processed later.
With a circular list, a pointer to the last node gives easy access also to the first node, by following one link. Thus, in applications that require access to both ends of the list (e.g., in the implementation of a queue), a circular structure allows one to handle the structure by a single pointer, instead of two.
One example where a deque can be used is the work stealing algorithm. [9] This algorithm implements task scheduling for several processors. A separate deque with threads to be executed is maintained for each processor. To execute the next thread, the processor gets the first element from the deque (using the "remove first element" deque operation).
Queue (abstract data type), a type of data structure in computer science Circular queue; Double-ended queue, also known as a deque; Priority queue; FIFO (computing and electronics) Load (computing) or queue, system load of a computer's operating system; Message queue; Queueing theory, the study of wait lines
Nonetheless, for many purposes, the user can ignore these infidelities and simply use the implementation as if it were the abstract data type. Usually, there are many ways to implement the same ADT, using several different concrete data structures. Thus, for example, an abstract stack can be implemented by a linked list or by an array ...
A Round Robin preemptive scheduling example with quantum=3. Round-robin (RR) is one of the algorithms employed by process and network schedulers in computing. [1] [2] As the term is generally used, time slices (also known as time quanta) [3] are assigned to each process in equal portions and in circular order, handling all processes without priority (also known as cyclic executive).
In computing, the producer-consumer problem (also known as the bounded-buffer problem) is a family of problems described by Edsger W. Dijkstra since 1965.. Dijkstra found the solution for the producer-consumer problem as he worked as a consultant for the Electrologica X1 and X8 computers: "The first use of producer-consumer was partly software, partly hardware: The component taking care of the ...