Search results
Results From The WOW.Com Content Network
The std::string class is the standard representation for a text string since C++98. The class provides some typical string operations like comparison, concatenation, find and replace, and a function for obtaining substrings. An std::string can be constructed from a C-style string, and a C-style string can also be obtained from one. [7]
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
In computer science, the Krauss wildcard-matching algorithm is a pattern matching algorithm. Based on the wildcard syntax in common use, e.g. in the Microsoft Windows command-line interface, the algorithm provides a non-recursive mechanism for matching patterns in software applications, based on syntax simpler than that typically offered by regular expressions.
P denotes the string to be searched for, called the pattern. Its length is m. S[i] denotes the character at index i of string S, counting from 1. S[i..j] denotes the substring of string S starting at index i and ending at j, inclusive. A prefix of S is a substring S[1..i] for some i in range [1, l], where l is the length of S.
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
Generalizations of the same idea can be used to find more than one match of a single pattern, or to find matches for more than one pattern. To find a single match of a single pattern, the expected time of the algorithm is linear in the combined length of the pattern and text, although its worst-case time complexity is the product of the two ...
The loop at the center of the function only works for palindromes where the length is an odd number. The function works for even-length palindromes by modifying the input string. The character '|' is inserted between every character in the inputs string, and at both ends. So the input "book" becomes "|b|o|o|k|".
The Burrows–Wheeler transform (BWT, also called block-sorting compression) rearranges a character string into runs of similar characters. This is useful for compression, since it tends to be easy to compress a string that has runs of repeated characters by techniques such as move-to-front transform and run-length encoding.