When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bounded operator - Wikipedia

    en.wikipedia.org/wiki/Bounded_operator

    A linear operator : between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then () is bounded in . A subset of a TVS is called bounded (or more precisely, von Neumann bounded) if every neighborhood of the origin absorbs it.

  3. Unitary operator - Wikipedia

    en.wikipedia.org/wiki/Unitary_operator

    Thus a unitary operator is a bounded linear operator that is both an isometry and a coisometry, [1] or, equivalently, a surjective isometry. [2] An equivalent definition is the following: Definition 2. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold: U is surjective, and

  4. Operator (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(mathematics)

    For example, bijective operators preserving the structure of a vector space are precisely the invertible linear operators. They form the general linear group under composition. However, they do not form a vector space under operator addition; since, for example, both the identity and −identity are invertible (bijective), but their sum, 0, is not.

  5. Spectrum (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Spectrum_(functional_analysis)

    The space of bounded linear operators B(X) on a Banach space X is an example of a unital Banach algebra. Since the definition of the spectrum does not mention any properties of B ( X ) except those that any such algebra has, the notion of a spectrum may be generalised to this context by using the same definition verbatim.

  6. Operator theory - Wikipedia

    en.wikipedia.org/wiki/Operator_theory

    In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators , and consideration may be given to nonlinear operators .

  7. Uniform boundedness principle - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness_principle

    In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm. The theorem was first published in 1927 by Stefan Banach and Hugo Steinhaus, but it was also proven independently by Hans Hahn.

  8. Continuous linear operator - Wikipedia

    en.wikipedia.org/wiki/Continuous_linear_operator

    Example: A continuous and bounded linear map that is not bounded on any neighborhood: If : is the identity map on some locally convex topological vector space then this linear map is always continuous (indeed, even a TVS-isomorphism) and bounded, but is bounded on a neighborhood if and only if there exists a bounded neighborhood of the origin ...

  9. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm.Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces.