Search results
Results From The WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The Albright–Goldman oxidation is a name reaction of organic chemistry, first described by the American chemists J. Donald Albright and Leon Goldman in 1965. [1] The reaction is particularly suitable for the synthesis of aldehydes from primary alcohols. Analogously, secondary alcohols can be oxidized to form ketones.
In an aldol condensation, water is subsequently eliminated and an α,β-unsaturated carbonyl is formed. The aldol cleavage or Retro-aldol reaction is the reverse reaction into the starting compounds. The name aldehyde-alcohol reaction derives from the reaction product in the case of a reaction among aldehydes, a β-hydroxy aldehyde.
Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H. Two broad strategies exist for carbonyl reduction. One method, which is favored in industry, uses hydrogen as the reductant.
An aldol condensation is a condensation reaction in organic chemistry in which two carbonyl moieties (of aldehydes or ketones) react to form a β-hydroxyaldehyde or β-hydroxyketone (an aldol reaction), and this is then followed by dehydration to give a conjugated enone. The overall reaction equation is as follows (where the Rs can be H)
The direct oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R−CH(OH) 2) by reaction with water before it can be further oxidized to the carboxylic acid. Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates
The Pfitzner–Moffatt oxidation, sometimes referred to as simply the Moffatt oxidation, is a chemical reaction for the oxidation of primary and secondary alcohols to aldehydes and ketones, respectively. The oxidant is a combination of dimethyl sulfoxide (DMSO) and dicyclohexylcarbodiimide (DCC). The reaction was first reported by J. Moffatt ...
Hemiacetals form in the reaction between alcohols and aldehydes or ketones. Using an acid catalyst, the reaction proceeds via nucleophilic attack of the carbonyl group by the alcohol. [4] A subsequent nucleophilic attack of the hemiacetal by the alcohol results in an acetal. [2] Solutions of simple aldehydes in alcohols mainly consist of the ...